top of page

蒙特梭利構成三角形教具的關聯與學習脈絡

The Relationship and Learning Sequence of Montessori Constructive Triangles

在蒙特梭利感官教具中,構成三角形教具是一組幫助孩子認識幾何形狀、探索組合與拆解關係的重要工具。這套教具有六盒,其中長方形盒、三角形盒、大六邊形盒、小六邊形盒彼此之間有緊密的關聯性。透過這些教具,孩子能夠循序漸進地學習形狀變化的原則,從具體操作中理解幾何概念,而不只是單純記住形狀名稱。

剛開始接觸這套教具的老師(成人),若能掌握每一盒的關鍵概念,以及它們如何相互聯繫,將能夠更有條理地引導孩子,讓學習過程變得更自然、更有系統性。


長方形盒—四邊形的組合與拆解

長方形盒主要探索正方形、長方形、菱形、梯形等基本形狀,讓孩子學習如何將它們切割並重新組合。例如,長方形可以切成兩個直角三角形,讓孩子理解直角三角形與長方形的關聯。

在這盒裡,菱形是構成三角形這一系列教具的關鍵形狀,因為它貫穿後續幾盒的探索。孩子透過觀察與操作,會發現菱形可以變化出兩種不同的切割方式,這個認知在後面的學習中會持續發展。

圖片摘自: alisonsmontessori.com
圖片摘自: alisonsmontessori.com

三角形盒——探索三角形的多種切割方式

這一盒的核心概念是將大正三角形進行不同方式的切割,形成不同類型的三角形。孩子在操作時,會發現大正三角形可以被切成:

  1. 兩塊:切成兩個直角三角形

  2. 三塊:切成兩個等腰鈍角三角形加上一個直角三角形

  3. 四塊:切成四個正三角形

透過這些拆解,孩子能夠認識不同種類的三角形,並開始理解形狀之間的轉換關係。這盒裡的直角三角形會在第六盒的藍色三角形盒中進一步深化,而等腰鈍角三角形與正三角形則會在六邊形盒裡呈現概念讓孩子進一步探索。

這盒的學習幫助孩子建立對三角形內部結構的認識,讓他們能夠在後續的幾何學習中更靈活地運用這些概念。

圖片摘自: alisonsmontessori.com
圖片摘自: alisonsmontessori.com

大六邊形盒—菱形的拆解與六邊形的組合

大六邊形盒的學習重點是將菱形切割成兩個等腰鈍角三角形,並探索如何組成六邊形。在這盒中,孩子能夠觀察到六邊形其實可以由不同種類的三角形或梯形組成,這讓他們更深入理解形狀之間的組合變化。

孩子透過這一盒的操作,能夠進一步強化對等腰鈍角三角形的理解,並發現不同形狀如何互相轉換,這對幾何學習是非常重要的基礎。

圖片摘自: alisonsmontessori.com
圖片摘自: alisonsmontessori.com

小六邊形盒—從菱形到正三角形的轉換

小六邊形盒的學習概念與大六邊形盒相似,但切割方式不同。這盒的核心概念是將菱形切割成兩個正三角形,讓孩子發現菱形的變化不只限於等腰鈍角三角形,也可以轉換成正三角形。(所以就面積而言,切割後的等腰鈍角三角形與小正三角形是相同的,當然,這一部分在幼兒園階段並不會特別去介紹,但為孩子未來的幾何學習埋下種籽)

孩子透過這盒的學習,能夠發現六邊形可以由六個正三角形拼成,這樣的觀察有助於發展對對稱性與比例的認知,也能讓他們在未來學習更複雜的幾何概念時,更有空間感與邏輯思維能力。


圖片摘自: alisonsmontessori.com
圖片摘自: alisonsmontessori.com

藍色三角形盒—探索不等邊直角三角形與角度變化

這盒的核心在於30°、60°、90°的直角三角形,孩子在這裡學習如何組合與拆解這些三角形,並觀察它們的角度變化。

這類三角形在幾何學習,呈現出角度的變化關係,對未來學習三角函數、面積計算等數學概念有直接影響。因此,這盒的學習不只是讓孩子認識形狀,而是讓他們透過實際操作來理解角度的概念,建立對數學邏輯的基礎。


最關鍵的形狀—貫穿五盒的核心元素

在這六盒當中,有一個形狀從第一盒到第五盒中都能找到,它就是菱形。

菱形的特殊性在於,它可以透過兩種方式來進行切割,例如:

  • 在長方形盒,孩子學會菱形的基本特性

  • 在三角形盒,菱形轉化為三個等腰鈍角三角形的組合

  • 在大六邊形盒,菱形可切成兩個等腰鈍角三角形並進行更多形狀組合的探索

  • 在小六邊形盒,菱形能切成兩個正三角形,並連結到與等腰鈍角三角形的合成與切割(替換)

透過這些操作,孩子能夠理解相同的形狀可以透過不同方式拆解,產生不同的結果,這是數學中一個非常重要的具體幾何的概念操作。


如何帶孩子學習這組教具

這套教具的重點不只是讓孩子認識形狀,而是透過操作與觀察,讓他們親自發現形狀之間的變化。種籽的老師們不需要直接告訴孩子答案,而是應該透過問題引導孩子思考,例如:

  • 「你發現這些形狀是怎麼拼起來的?」

  • 「如果換另一種切法(橫切、縱切),會產生什麼新的形狀?」

  • 「這些形狀之間有什麼相似或不同的地方?」

透過引導,孩子會更有興趣去探索,並能夠真正理解形狀的變化,而不只是知道形狀跟記住名稱。


這組教具的學習過程,從最基本的長方形與三角形開始,逐步發展到六邊形與不等邊三角形的探索。透過操作,孩子能夠建立完整的幾何概念,培養空間推理能力,這些能力不僅有助於數學學習,也能幫助孩子在日常生活中發展更強的邏輯思維與觀察力。

蒙特梭利教育的核心,就是讓孩子透過實際操作來學習,而這套構成三角形教具正是幾何學習的最佳工具之一。 The Relationship and Learning Sequence of Montessori Constructive Triangles In Montessori sensorial materials, Constructive Triangles serve as an essential tool for helping children recognize geometric shapes, explore the relationships between composition and decomposition, and understand transformation principles. This material consists of six boxes, among which the Rectangular Box, Triangular Box, Large Hexagonal Box, and Small Hexagonal Box are closely interconnected. Through these materials, children can progressively grasp geometric transformations through hands-on experiences rather than merely memorizing shape names.

For teachers (adults) who are newly introduced to this material, mastering the key concepts of each box and their interrelations will enable them to guide children systematically, making the learning process more natural and structured.

Rectangular Box – Composition and Decomposition of Quadrilaterals

The Rectangular Box focuses on fundamental shapes such as squares, rectangles, rhombuses, and trapezoids, teaching children how to cut and reassemble them. For example, a rectangle can be divided into two right-angled triangles, helping children understand the connection between right-angled triangles and rectangles.

Among these shapes, the rhombus plays a crucial role in the Constructive Triangles series because it appears throughout subsequent boxes. Through observation and manipulation, children discover that a rhombus can be divided in two different ways, a concept that continues to develop in later learning stages.

Triangular Box – Exploring Different Ways to Divide a Triangle

The Triangular Box introduces the concept of dividing a large equilateral triangle in different ways, forming various types of triangles. Children will discover that a large equilateral triangle can be divided into:

  • Two pieces: Two right-angled triangles

  • Three pieces: Two isosceles obtuse triangles and one right-angled triangle

  • Four pieces: Four equilateral triangles

Through these exercises, children develop an understanding of different types of triangles and how they transform from one form to another. The right-angled triangle from this box is explored further in the Blue Triangles Box, while the isosceles obtuse triangle and equilateral triangle appear again in the hexagonal boxes.

By working with this box, children build an awareness of the internal structure of triangles, allowing them to apply these concepts more flexibly in future geometry learning.

Large Hexagonal Box – Decomposing Rhombuses and Forming Hexagons

The Large Hexagonal Box emphasizes how rhombuses can be divided into two isosceles obtuse triangles, and how different shapes can be used to form hexagons. In this box, children observe that a hexagon can be constructed using a variety of triangles or trapezoids, deepening their understanding of geometric composition.

By manipulating these shapes, children reinforce their understanding of isosceles obtuse triangles and explore how shapes transform into one another, building a strong foundation for their geometric learning.

Small Hexagonal Box – Transforming Rhombuses into Equilateral Triangles

The Small Hexagonal Box shares similarities with the Large Hexagonal Box, but features different cutting techniques. The core concept of this box is dividing a rhombus into two equilateral triangles, allowing children to discover that rhombuses can transform not only into isosceles obtuse triangles but also into equilateral triangles.

(From an area perspective, the isosceles obtuse triangles and equilateral triangles derived from a rhombus have the same area. While this mathematical detail is not explicitly taught at the preschool level, it lays the groundwork for children's future understanding of geometry.)

Through this material, children learn that a hexagon can be composed of six equilateral triangles. This realization helps develop symmetry and proportion awareness, enhancing their spatial reasoning and logical thinking skills for future mathematical learning.

Blue Triangles Box – Exploring Scalene Right-Angled Triangles and Angle Transformations

This box focuses on 30°-60°-90° right-angled triangles, where children explore their composition and decomposition while observing how angles change.

These specific triangles demonstrate angular relationships in geometry, directly influencing later concepts such as trigonometry and area calculation. Thus, the Blue Triangles Box is not just about shape recognition; it allows children to develop an intuitive understanding of angles, building a foundation for logical mathematical reasoning.

The Most Crucial Shape – The Rhombus Across Five Boxes

Among the six boxes, one shape appears repeatedly across the first five boxes: the rhombus.

The rhombus is special because it can be divided in two ways, reinforcing different geometric concepts:

  • Rectangular Box: Children learn the basic properties of a rhombus.

  • Triangular Box: The rhombus is divided into three isosceles obtuse triangles.

  • Large Hexagonal Box: The rhombus is split into two isosceles obtuse triangles, further explored through shape composition.

  • Small Hexagonal Box: The rhombus is divided into two equilateral triangles, connecting it to both isosceles obtuse triangles and equilateral triangles.

Through these activities, children grasp the concept that a single shape can be decomposed in different ways, leading to different results—a crucial hands-on geometric principle.

How to Guide Children in Learning This Material

The goal of this material is not just to help children recognize shapes, but to encourage them to discover transformations through hands-on experiences and observations. Montessori teachers should avoid directly giving answers and instead guide children through thought-provoking questions, such as:

  • "How are these shapes put together?"

  • "What happens if you cut it differently (horizontally or vertically)?"

  • "What similarities or differences do you notice between these shapes?"

By fostering curiosity and exploration, children develop a genuine interest in geometric transformations, going beyond mere shape memorization.

A Structured Learning Progression

The learning process of this material starts with basic rectangles and triangles, gradually advancing to hexagons and scalene triangles. Through hands-on manipulation, children develop a comprehensive understanding of geometry, strengthening their spatial reasoning skills. These abilities not only support mathematical learning but also enhance logical thinking and observational skills in daily life.

At the heart of Montessori education is the belief that children learn best through hands-on experiences, and the Constructive Triangles are an excellent tool for fostering deep geometric understanding.

Bình luận


bottom of page